TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: Conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase
 
Options

Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: Conversion of ring cleavage product by 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase

Publikationstyp
Journal Article
Date Issued
2006-04-15
Sprache
English
Author(s)
Gescher, Johannes  
Ismail, Wael  
Ölgeschläger, Ellen  
Eisenreich, Wolfgang  
Wörth, Jürgen  
Fuchs, Georg  
TORE-URI
http://hdl.handle.net/11420/14790
Journal
Journal of bacteriology  
Volume
188
Issue
8
Start Page
2919
End Page
2927
Citation
Journal of Bacteriology 188 (8): 2919-2927 (2006-04-15)
Publisher DOI
10.1128/JB.188.8.2919-2927.2006
Scopus ID
2-s2.0-33646040425
PubMed ID
16585753
Publisher
American Society for Microbiology
Benzoate, a strategic intermediate in aerobic aromatic metabolism, is metabolized in various bacteria via an unorthodox pathway. The intermediates of this pathway are coenzyme A (CoA) thioesters throughout, and ring cleavage is nonoxygenolytic. The fate of the ring cleavage product 3,4-deliydroadipyl-CoA semialdehyde was studied in the β-proteobacterium Azoarcws evansii. Cell extracts contained a benzoate-induced, NADP+-specific aldehyde dehydrogenase, which oxidized this intermediate. A postulated putative long-chain aldehyde dehydrogenase gene, which might encode this new enzyme, is located on a cluster of genes encoding enzymes and a transport system required for aerobic benzoate oxidation. The gene was expressed in Escherichia coli, and the maltose-binding protein-tagged enzyme was purified and studied. It is a homodimer composed of 54 kDa (without tag) subunits and was confirmed to be the desired 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. The reaction product was identified by nuclear magnetic resonance spectroscopy as the corresponding acid 3,4-dehydroadipyl-CoA. Hence, the intermediates of aerobic benzoyl-CoA catabolic pathway recognized so far are benzoyl-CoA; 2,3-dihydro-2,3- dihydroxybenzoyl-CoA; 3,4-dehydroadipyl-CoA semialdehyde plus formate; and 3,4-dehydroadipyl-CoA. The further metabolism is thought to lead to 3-oxoadipyl-CoA, the intermediate at which the conventional and the unorthodox pathways merge.
DDC Class
570: Biowissenschaften, Biologie
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback