TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A Novel Vessel Rupture Model for Neurointerventional Training
 
Options

A Novel Vessel Rupture Model for Neurointerventional Training

Publikationstyp
Conference Paper
Date Issued
2024-09
Sprache
English
Author(s)
Schmiech, Jonte  
Produktentwicklung und Konstruktionstechnik M-17  
De Sousa Guerreiro, Helena I.  
Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention. Universitätsklinikum Hamburg-Eppendorf  
Sobirey, Eve  
Produktentwicklung und Konstruktionstechnik M-17  
Wegner, Marie  orcid-logo
Produktentwicklung und Konstruktionstechnik M-17  
Belakhal, Besma
Produktentwicklung und Konstruktionstechnik M-17  
Ramdani, Nora
Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention. Universitätsklinikum Hamburg-Eppendorf  
Fiehler, Jens  
Klinik und Poliklinik für Neuroradiologische Diagnostik und Intervention. Universitätsklinikum Hamburg-Eppendorf  
Krause, Dieter  orcid-logo
Produktentwicklung und Konstruktionstechnik M-17  
Institute
Produktentwicklung und Konstruktionstechnik M-17  
TORE-URI
https://hdl.handle.net/11420/52644
Journal
Transactions on additive manufacturing meets medicine  
Volume
6
Issue
1
Citation
Additive Manufacturing Meets Medicine, AMMM 2024
Contribution to Conference
Additive Manufacturing Meets Medicine, AMMM 2024  
Publisher DOI
10.18416/AMMM.2024.24091782
Publisher
Infinite Science Publishing
Neurovascular conditions such as acute ischemic stroke and intracranial aneurysmsnecessitatecomplex neurointerventional procedures, posing significant risks including subarachnoid hemorrhage (SAH). Effective training is critical for minimizing these risks, yet current simulation models lack realistic, animal-free training options for managing complications like SAH. This paper aims to develop and integrate a vessel rupture model into the Hamburg Anatomical Neurointerventional Simulator (HANNES), enhancing training for intraoperative complication management. The rupture model was designed by incorporating requirements from both engineers and medical professionals. Key features include modular integration into HANNES, reusability, and adjustable bleeding rates controlled by the training supervisor. The model simulates the perivascular spread of contrast agent, with a point-specific origin and diffuse contour, ensuring realistic SAH visualization on digital subtraction angiography (DSA).The additively manufactured model includes a sponge-filled subarachnoid space and a valve for activating or deactivating the simulated hemorrhage.Evaluations byexperiencedneuroradiologists demonstrated effective control and realistic appearance of the simulated bleeding, giving the model anoverall Likert scale rating of 3.7 out of 5.Identified optimization potentials included the distal bleeding position, while the realistic extravasation of contrast agent was positively noted.The rupture model successfully meets the defined requirements, offering a practical tool for training in the management of neurointerventional complications.Future improvements will address the distal position of the hemorrhage to further optimize the effectiveness of the training, ultimately enhancing the preparedness of neurointerventionalistin handling SAH.
DDC Class
610: Medicine, Health
Funding(s)
Alternativmethoden: Synthetisches Simulationsmodell für Training und Forschung der endovaskulären Schlaganfallbehandlung - Methodische Entwicklung und Fertigung  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback