TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Direct numerical simulation of particle impact on thin liquid films using a combined volume of fluid and immersed boundary method
 
Options

Direct numerical simulation of particle impact on thin liquid films using a combined volume of fluid and immersed boundary method

Publikationstyp
Journal Article
Date Issued
2012-02-13
Sprache
English
Author(s)
Jain, Deepak  
Deen, Niels G.  
Kuipers, Hans  
Antonyuk, Sergiy  
Heinrich, Stefan  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/13684
Journal
Chemical engineering science  
Volume
69
Issue
1
Start Page
530
End Page
540
Citation
Chemical Engineering Science 69 (1): 530-540 (2012-02-13)
Publisher DOI
10.1016/j.ces.2011.11.018
Scopus ID
2-s2.0-83955163621
Gas-solid flows involving wet particles are very frequently encountered in a variety of applications in industries, which includes live problems in the field of spray granulation, coking, gas phase polymerization, etc. These processes can be studied with discrete element models. The predictive capabilities of these models depend on the accuracy of the particle-particle contact dynamics. Although this dynamics is well understood for dry particles, this is not the case for wet particles. The current study focuses on a particle colliding with a thin liquid film to mimic the wet particle collisions and understand the effect of system parameters on the (apparent) restitution coefficient. Our model combines the VOF model developed by van Sint Annaland et al. (2005) and the Immersed Boundary (IB) model reported by van der Hoef et al. (2006). The Volume of Fluid (VOF) part features (i) an interface reconstruction technique based on piecewise linear interface representation (ii) a three-dimensional version of the continuum surface force (CSF) model of Brackbill et al. (1992). The Immersed Boundary (IB) part incorporates the particle-fluid interaction via a Direct Forcing Method (DFM). The hybrid VOF-IB model results are demonstrated and verified for a wide spectrum of parameters, from the experimental findings presented by Antonyuk et al. (2009).
Subjects
Energy dissipation
Fluidization
Numerical analysis
Particulate processes
Simulation
Wet particle collisions
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback