TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Vector space bases for the homogeneous parts in homogeneous ideals and graded modules over a polynomial ring
 
Options

Vector space bases for the homogeneous parts in homogeneous ideals and graded modules over a polynomial ring

Citation Link: https://doi.org/10.15480/882.2376
Publikationstyp
Journal Article
Date Issued
2014
Sprache
English
Author(s)
Schmidt, Natalia  
Zimmermann, Karl-Heinz  
Institut
Eingebettete Systeme E-13  
TORE-DOI
10.15480/882.2376
TORE-URI
http://hdl.handle.net/11420/3161
Journal
International journal of pure and applied mathematics  
Volume
93
Issue
6
Start Page
835
End Page
844
Citation
International Journal of Pure and Applied Mathematics 6 (93): 835-844 (2014-04-04)
Publisher DOI
10.12732/ijpam.v93i6.9
Scopus ID
2-s2.0-84903166845
Publisher
Academic Publications
© 2014 Academic Publications, Ltd. In this paper, vector space bases for the homogeneous parts of homogeneous ideals and graded modules over a commutative polynomial ring are given using Gröbner bases.
Subjects
graded ring
polynomial ring
homogeneous ideal
vector space basis
DDC Class
510: Mathematik
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

9.pdf

Size

94.95 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback