TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Investigation of Long-Term Embedded RFID Sensors for Structural Health Monitoring
 
Options

Investigation of Long-Term Embedded RFID Sensors for Structural Health Monitoring

Publikationstyp
Conference Paper
Date Issued
2024-10-20
Sprache
English
Author(s)
Johann, S.
Kohlhoff, H.
Schlischka, J.
Strangfeld, C.
Bartholmai, M.
Smarsly, Kay  
Digitales und autonomes Bauen B-1  
TORE-URI
https://tore.tuhh.de/handle/11420/52826
Citation
2024 IEEE SENSORS
Contribution to Conference
2024 IEEE SENSORS
Publisher DOI
10.1109/sensors60989.2024.10785220
Scopus ID
2-s2.0-85215287162
Publisher
IEEE
Ensuring the health of civil engineering structures is crucial for the safety and longevity of the built environment. In this direction, structural health monitoring (SHM) has been increasingly employed, providing insight into the structural behavior, based on sensor data representing structural responses. This paper investigates the plausibility of embedding sensors into concrete structures for SHM, leveraging radio frequency identification (RFID) technology, in an attempt to enable the passive operation of sensors without continuous power supply and to reduce potential sources of interference. In contrast to conventional SHM sensors, the uninterrupted operation of embedded sensors must be ensured because post-installation interventions are either impractical or impossible. RFID technology enables wireless data acquisition and energy transmission without mechanical impact on civil engineering structures, although it may be challenging when RFID sensors are embedded in concrete. This study presents a durable passive embedded RFID sensor system (i.e., a system without batteries), including the selection of components, such as housing and cable materials, suitable for withstanding the aggressive environment of concrete without damaging the sensitive electronics or contaminating the data recorded by the sensors. The proposed sensor system is validated in laboratory tests, the results of which provide insights into the influence of each component and are intended to advance the implementation of embedded sensor systems.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback