TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A continuous approach to the emulsion gelation method for the production of aerogel micro-particle
 
Options

A continuous approach to the emulsion gelation method for the production of aerogel micro-particle

Publikationstyp
Journal Article
Date Issued
2019-04-05
Sprache
English
Author(s)
Baudron, Victor  
Gurikov, Pavel  
Smirnova, Irina  orcid-logo
Institut
Thermische Verfahrenstechnik V-8  
Entwicklung und Modellierung neuartiger nanoporöser Materialien V-EXK2  
TORE-URI
http://hdl.handle.net/11420/2146
Journal
Colloids and Surfaces A: Physicochemical and Engineering Aspects  
Volume
566
Start Page
58
End Page
69
Citation
Colloids and Surfaces A: Physicochemical and Engineering Aspects (566): 58-69 (2019-04-05)
Publisher DOI
10.1016/j.colsurfa.2018.12.055
Scopus ID
2-s2.0-85059863534
Aerogel micro-particles have a wide range of applications demonstrated at lab-scale in numerous publications, but material in a larger amount needs to be produced to allow for industrial tests and prototyping. In this work, we propose a continuous emulsion-gelation process able to produce gel micro-particles in sizeable quantities, demonstrating the industrial relevance of such approach. Alginate is taken as a model gelling system and two gelation mechanisms are demonstrated. Alginate solution and oil are pumped together through a progressive cavity pump and fed to a colloid mill to produce alginate in oil emulsion in one pass. The gelation in emulsion is then carried in-line via a controlled injection of a gelation trigger (acetic acid or calcium chloride). The gel microparticles are separated from the oil via sedimentation or centrifugation and partitioning into an ethanol solution. Further solvent exchange to ethanol and supercritical drying with CO 2 yielded aerogel microparticles with large specific surface area. The size of the emulsion droplets is directly related to the final aerogel particles size. The influence of the emulsification parameters on the droplet size is thus discussed and assessed using critical capillary number values from the literature. To complete this task, the dynamic interfacial tension of the alginate-paraffin oil-Span80 system was measured and the rheology of the alginate solution and of the emulsion assessed.
Funding(s)
New generation of nanoporous organic and hybrid aerogels for industrial applications: from the lab to pilot scale production - NanoHybrids  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback