TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Simulation-driven Electrical Impedance Tomography for buoyancy-driven electrolyte mixing: A hybrid hydrodynamic–circuit modeling framework
 
Options

Simulation-driven Electrical Impedance Tomography for buoyancy-driven electrolyte mixing: A hybrid hydrodynamic–circuit modeling framework

Publikationstyp
Journal Article
Date Issued
2025-11
Sprache
English
Author(s)
Ostovar, Hossein  
Chemische Reaktionstechnik V-2  
Hollenberg, Moritz  
Mechatronik im Maschinenbau M-4  
Liebing, Tom  
Mechatronik im Maschinenbau M-4  
Korup, Oliver  
Chemische Reaktionstechnik V-2  
Kähler, Dennis  
Mechatronik im Maschinenbau M-4  
Kern, Thorsten Alexander  orcid-logo
Mechatronik im Maschinenbau M-4  
Horn, Raimund  
Chemische Reaktionstechnik V-2  
TORE-URI
https://hdl.handle.net/11420/59289
Journal
Measurement  
Volume
261
Article Number
119745
Citation
Measurement 261: 119745 (2026)
Publisher DOI
10.1016/j.measurement.2025.119745
Publisher
Elsevier BV
Is Supplemented By
10.15480/882.16259
We present a modular, end-to-end simulation benchmark for Electrical Impedance Tomography (EIT) in chemical reactor monitoring. The goal is to enable controlled and repeatable evaluation of EIT reconstruction methods in a realistic, physics-based setting. The framework integrates the full pipeline—from hydrodynamic transport and electrochemical modeling to hardware emulation and image reconstruction. For this purpose, aqueous HCl mixing is modeled using Stokes–Boussinesq flow coupled with advection–diffusion; local conductivity is computed via the Debye–Hückel–Onsager approximation and mapped to resistor networks simulated in SPICE with a 32-electrode EIT analog front-end. Boundary voltages are generated and processed using the Complete Electrode Model (CEM) in EIDORS and reconstructed with NOSER and Total Variation (TV). The modular design enables independent refinement of each module for task-specific front-ends and reconstructions. A comparison of FEM/CEM and SPICE simulations under matched hardware configurations shows close agreement in voltage measurements, validating circuit translation. For homogeneous measurements, simulated voltages were further validated against data from a self-built EIT device, confirming consistency across both simulation paths. Moreover, by modifying hardware-specific parameters in SPICE, we demonstrate how design choices influence measurement behavior, supporting targeted front-end optimization. This simulative benchmark thus provides a validated, reusable testbed for studying physics–algorithm–hardware interactions and for standardized, quantitative evaluation of EIT methods in reactor-relevant settings. It integrates electrical modeling, reconstruction algorithms, and engineering aspects into a coherent cross-domain framework that highlights how modeling and reconstruction choices shape interpretation across applications.
DDC Class
600: Technology
Funding(s)
SFB 1615 - Teilprojekt A02: Quantitative elektrische 3D-Impedanztomographie in Echtzeit für Mehrphasenreaktoren  
SFB 1615 - SMARTe Reaktoren für die Verfahrenstechnik der Zukunft  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback