Publication:
Faraday instability in a surface-frozen liquid

cris.virtual.author-gnd113167281X
cris.virtual.author-gnd#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-gnd#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-gnd#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-gnd#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-gnd#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-2126-9100
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentMaterial- und Röntgenphysik M-2
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-gnd0ab4ea86-8d32-466d-b7e3-dbebb3d7f7de
cris.virtualsource.author-gnd9b804914-1aec-4211-8e9d-9206f13d2164
cris.virtualsource.author-gnd7d361675-ab2a-4414-a78a-7c4114af43b7
cris.virtualsource.author-gnd751d229c-cafd-4ee9-bc62-64bd104754b7
cris.virtualsource.author-gnd700c20f2-6c16-4d84-bc91-483459b74095
cris.virtualsource.author-gndb74945c1-1b70-4018-b52e-0c55408239a6
cris.virtualsource.author-orcid0ab4ea86-8d32-466d-b7e3-dbebb3d7f7de
cris.virtualsource.author-orcid9b804914-1aec-4211-8e9d-9206f13d2164
cris.virtualsource.author-orcid7d361675-ab2a-4414-a78a-7c4114af43b7
cris.virtualsource.author-orcid751d229c-cafd-4ee9-bc62-64bd104754b7
cris.virtualsource.author-orcid700c20f2-6c16-4d84-bc91-483459b74095
cris.virtualsource.author-orcidb74945c1-1b70-4018-b52e-0c55408239a6
cris.virtualsource.department0ab4ea86-8d32-466d-b7e3-dbebb3d7f7de
cris.virtualsource.department9b804914-1aec-4211-8e9d-9206f13d2164
cris.virtualsource.department7d361675-ab2a-4414-a78a-7c4114af43b7
cris.virtualsource.department751d229c-cafd-4ee9-bc62-64bd104754b7
cris.virtualsource.department700c20f2-6c16-4d84-bc91-483459b74095
cris.virtualsource.departmentb74945c1-1b70-4018-b52e-0c55408239a6
datacite.resourceTypeOtheren_US
datacite.resourceTypeGeneralOtheren_US
dc.contributor.authorHuber, Patrick
dc.contributor.authorSoprunyuk, Viktor
dc.contributor.authorEmbs, Jan P.
dc.contributor.authorWagner, Christian
dc.contributor.authorDeutsch, Moshe
dc.contributor.authorKumar, Satish
dc.date.accessioned2022-06-07T06:54:41Z
dc.date.available2022-06-07T06:54:41Z
dc.date.issued2005-04-08
dc.description.abstractFaraday surface instability measurements of the critical acceleration, ac, and wavenumber, kc, for standing surface waves on a tetracosanol (C₂4H₅0) melt exhibit abrupt changes at Ts=54degC above the bulk freezing temperature. The measured variations of ac and kc vs. temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>Ts), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T < Ts). The change at Ts is traced to the onset of surface freezing, where the steep velocity gradient in the surface-pinned flow significantly increases the viscous dissipation near the surface.en
dc.identifier.arxiv0504056v1de_DE
dc.identifier.citationPhysical Review Letters 94 (18): 184504 (2005-04-08)de_DE
dc.identifier.scopus2-s2.0-27144529986de_DE
dc.identifier.urihttp://hdl.handle.net/11420/12825
dc.language.isoende_DE
dc.publisherAmerican Physical Societyde_DE
dc.relation.ispartofPhysical review lettersde_DE
dc.relation.issn1079-7114de_DE
dc.subjectPhysics - Fluid Dynamicsde_DE
dc.subjectPhysics - Fluid Dynamicsde_DE
dc.subject.ddc530: Physikde_DE
dc.titleFaraday instability in a surface-frozen liquidde_DE
dc.typeJournal Articlede_DE
dc.type.casraiOtheren_US
dc.type.diniOtheren_US
dc.type.driverOtheren_US
dcterms.DCMITypeOtheren_US
dspace.entity.typePublication
local.status.inpressfalsede_DE
local.type.legacyArticle
oaire.citation.articlenumber184504de_DE
oaire.citation.issue18de_DE
oaire.citation.volume94de_DE
tuhh.abstract.englishFaraday surface instability measurements of the critical acceleration, ac, and wavenumber, kc, for standing surface waves on a tetracosanol (C₂4H₅0) melt exhibit abrupt changes at Ts=54degC above the bulk freezing temperature. The measured variations of ac and kc vs. temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>Ts), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T < Ts). The change at Ts is traced to the onset of surface freezing, where the steep velocity gradient in the surface-pinned flow significantly increases the viscous dissipation near the surface.de_DE
tuhh.publisher.doi10.1103/PhysRevLett.94.184504
tuhh.type.opusOtheren_US

Files