TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material
 
Options

Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

Citation Link: https://doi.org/10.15480/882.3001
Publikationstyp
Journal Article
Date Issued
2020-09-30
Sprache
English
Author(s)
Brinker, Manuel  orcid-logo
Dittrich, Guido  
Richert, Claudia  
Lakner, Pirmin  
Krekeler, Tobias  
Keller, Thomas F.  
Huber, Norbert  orcid-logo
Huber, Patrick  orcid-logo
Institut
Werkstoffphysik und -technologie M-22  
Betriebseinheit Elektronenmikroskopie M-26  
Center for Integrated Multiscale Material Systems M-2  
TORE-DOI
10.15480/882.3001
TORE-URI
http://hdl.handle.net/11420/7648
Journal
Science advances  
Volume
6
Issue
40
Article Number
eaba1483
Citation
Science Advances 40 (6): eaba1483 (2020)
Publisher DOI
10.1126/sciadv.aba1483
Scopus ID
2-s2.0-85092484691
PubMed ID
32998892
Publisher
American Association for the Advancement of Science
Is Supplemented By
10.15480/336.2753
The absence of piezoelectricity in silicon makes direct electro-mechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is 3 orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimetre cross-section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4-0.9 V) along with the sustainable and biocompatible base materials make this hybrid promising for bio-actuator applications.
Subjects
Physics - Mesoscopic Systems and Quantum Hall Effect
Physics - Mesoscopic Systems and Quantum Hall Effect
Physics - Materials Science
Physics - Soft Condensed Matter
physics.app-ph
Physics - Chemical Physics
DDC Class
530: Physik
540: Chemie
Funding(s)
SFB 986: Teilprojekt B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemen  
SFB 986: Teilprojekt B4 - Mikromechanisches Materialverhalten hierarchischer Werkstoffe  
SFB 986: Zentralprojekt Z3 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

eaba1483.full.pdf

Size

881.67 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback