TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Sustainable Carbon Utilization for a Climate-Neutral Economy - Framework Necessities and Assessment Criteria
 
Options

Sustainable Carbon Utilization for a Climate-Neutral Economy - Framework Necessities and Assessment Criteria

Citation Link: https://doi.org/10.15480/882.13255
Publikationstyp
Journal Article
Date Issued
2024-08-19
Sprache
English
Author(s)
Zitscher, Tjerk  
Umwelttechnik und Energiewirtschaft V-9  
Kaltschmitt, Martin  
Umwelttechnik und Energiewirtschaft V-9  
TORE-DOI
10.15480/882.13255
TORE-URI
https://hdl.handle.net/11420/48913
Journal
Energies  
Volume
17
Article Number
4118
Citation
Energies 17 (16): 4118 (2024)
Publisher DOI
10.3390/en17164118
Scopus ID
2-s2.0-85202351286
Publisher
Multidisciplinary Digital Publishing Institute
The need to limit anthropogenic climate change to 1.5–2 °C, as agreed in the Paris Agreement, requires a significant reduction of CO2 emissions resulting from the use of fossil carbon. However, based on current knowledge, carbon is expected to remain crucial in certain industrial sectors, e.g., the chemical industry. Consequently, it is essential to identify and utilize sustainable carbon sources in the future. In this context, various carbon sources were examined and classified in terms of their disruption of the Earth’s (fast) carbon cycle. Furthermore, the examined carbon sources were qualitatively analyzed with regard to their technical readiness level, their energy expenditure, and their current and future availability, as well as legal regulation within the European Union. As a result, only biogenic and mixed carbon from the ambient air can be considered genuinely sustainable within the Earth’s (fast) carbon cycle. Mixed carbon streams, e.g., from waste recycling, fall into a gray area. The same applies to certain process-related emissions that originally descend from fossil fuel energy. In terms of energy considerations, technical maturity, and exploitable potentials, prioritizing the utilization of biogenic carbon sources is advisable for the time being, especially for CO2 produced as a by-product originating from biogenic carbon carriers.
DDC Class
363: Other Social Problems and Services
620: Engineering
Funding(s)
Open-Access-Publikationskosten / 2022-2024 / Technische Universität Hamburg (TUHH)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

energies-17-04118.pdf

Type

Main Article

Size

1.36 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback