TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Efficient global multi parameter calibration for complex system models using machine-learning surrogates
 
Options

Efficient global multi parameter calibration for complex system models using machine-learning surrogates

Citation Link: https://doi.org/10.15480/882.15403
Publikationstyp
Conference Paper
Date Issued
2023-12-22
Sprache
English
Author(s)
Aka, Julius  
Brunnemann, Johannes  
Freund, Svenne  
Technische Thermodynamik M-21  
Speerforck, Arne  
Technische Thermodynamik M-21  
TORE-DOI
10.15480/882.15403
TORE-URI
https://hdl.handle.net/11420/56263
Citation
15th International Modelica Conference 2023
Contribution to Conference
15th International Modelica Conference 2023  
Publisher DOI
10.3384/ecp204107
In this work, we adress challenges associated with multi parameter calibration of complex system models of high computational expense. We propose to replace the Modelica Model for screening of parameter space by a computational effective Machine-Learning Surrogate, followed by a polishing with a gradient-based optimizer coupled to the Modelica Model. Our results show the superiority of this approach compared to common-used optimization strategies. We can resign on determining initial optimization values while using a small number of Modelica model calls, paving the path towards efficient global optimization. The Machine Learning Surrogate, namely a Physics Enhanced Latent Space Variational Autoencoder (PELS-VAE), is able to capture the impact of most influential parameters on small training sets and delivers sufficiently good starting values to the gradient-based optimizer. In order to make this paper self-contained, we give a sound overview to the necessary theory, namely Global Sensitivity Analysis with Sobol Indices and Variational Autoencoders.
DDC Class
006.3: Artificial Intelligence
003: Systems Theory
519: Applied Mathematics, Probabilities
620: Engineering
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

ecp204107_AkaBrunnemannFreundSpeerforck.pdf

Size

1.27 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback