TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. IVUS-Simulation for Improving Segmentation Performance of Neural Networks via Data Augmentation
 
Options

IVUS-Simulation for Improving Segmentation Performance of Neural Networks via Data Augmentation

Publikationstyp
Conference Paper
Date Issued
2019-09
Sprache
English
Author(s)
Sommer, Franziska  
Bargsten, Lennart 
Schlaefer, Alexander  
Institut
Medizintechnische Systeme E-1  
TORE-URI
http://hdl.handle.net/11420/4363
Start Page
47
End Page
51
Citation
CURAC 2019 - Tagungsband : 18. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V.: 47-51
Contribution to Conference
18. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V.  
Publisher Link
https://www.curac.org/images/advportfoliopro/images/CURAC2019/Tagungsband_Impressum_Curac.pdf
Convolutional neural networks (CNNs) produce promising results when applied to a wide range of medical imaging tasks including the segmentation of tissue structures like the artery lumen and wall layers in intravascular ultrasound (IVUS) image data. However, large annotated datasets are needed for training to achieve sufficient performances. To increase the dataset size, data augmentation techniques like random image transformations are commonly used. In this work, we propose a new systematic approach to generate artificial IVUS image data with the ultrasound simulation software Field II in order to perform data augmentation. A simulation model was systematically tuned to a clinical data set based on the Frechet Inception Distance (FID). We show that the segmentation performance of a state\-of\-the\-art CNN with U\-Net architecture improves when pre\-trained with our synthetic IVUS data
DDC Class
004: Computer Sciences
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback