TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. On the lifetime prediction of rolling lobe air springs
 
Options

On the lifetime prediction of rolling lobe air springs

Publikationstyp
Journal Article
Date Issued
2018-12
Sprache
English
Author(s)
von Eitzen, Arne  
Flamm, Martin  
Steinweger, Thomas  
Weltin, Uwe  
Institut
Zuverlässigkeitstechnik M-24  
TORE-URI
http://hdl.handle.net/11420/2644
Journal
Engineering failure analysis  
Volume
94
Start Page
313
End Page
326
Citation
Engineering Failure Analysis (94): 313-326 (2018-12)
Publisher DOI
10.1016/j.engfailanal.2018.08.001
Scopus ID
2-s2.0-85051957693
In this paper, the fatigue life of rolling lobe air springs made from cord-rubber composites is investigated with particular focus on the crack nucleation approach. Commonly used test specimens like the simple tension test specimen or the dumbbell specimen fail in the fatigue analysis of rolling lobe air springs because the fatigue characteristic of the cord-rubber interface is represented insufficiently. Therefore a new cord-rubber specimen is developed. The fatigue characteristic of the new specimen is discussed and Wöhler curves for two different predictors based on Cauchy stress and configurational stress are determined. Using FEA with a two-scale model of the air spring, the cycles-to-failure with respect to piston diameter and different inner pressures are determined and compared to test results taken from the literature. The results from the literature were derived at elevated temperature. Therefore, the Arrhenius approach is used to take into account different temperatures. In addition the crack growth approach using the cracking energy density is applied. The results show an improvement in the prediction of rolling lobe air springs fatigue life with respect to the crack initiation plane orientation and the cycles-to-failure using the new specimen. Compared to the crack nucleation approach, the crack growth approach seems to slightly overpredict the fatigue lives.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback