TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Deep-learning-based image acquisition support tool for endoscopic narrow band imaging of the larynx
 
Options

Deep-learning-based image acquisition support tool for endoscopic narrow band imaging of the larynx

Publikationstyp
Journal Article
Date Issued
2023-05-12
Sprache
English
Author(s)
Eggert, Dennis  
Bhattacharya, Debayan  
Medizintechnische und Intelligente Systeme E-1  
Felicio-Briegel, Axelle
Volgger, Veronika  
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
Betz, Christian Stephan  
TORE-URI
https://hdl.handle.net/11420/45004
Journal
Laryngo-Rhino-Otologie  
Volume
102
Issue
S 02
Start Page
31
End Page
32
Citation
Laryngo-Rhino-Otologie 102(S02): 31-32 (2023)
Publisher DOI
10.1055/s-0043-1767104
Publisher
Thieme
Narrow band imaging (NBI) enables a contrast-enhanced imaging of mucosal blow-vessels. Nowadays NBI is a standard feature in many endoscopes. NBI is increasingly being applies in clinical investigations of the head-neck region. Using flexible laryngoscopes different laryngeal lesions can be investigated in awake patients. NBI enables a better recognition and differentiation of different pathologies than white light endoscopy
Subjects
Endoskopie
Mikroskopie
Optik
Photonik
MLE@TUHH
DDC Class
610: Medicine, Health
620: Engineering
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback