TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. BReP‐SNAP‐T‐54: Efficient Stochastic Optimization Accounting for Uncertainty in HDR Prostate Brachytherapy Needle Placement
 
Options

BReP‐SNAP‐T‐54: Efficient Stochastic Optimization Accounting for Uncertainty in HDR Prostate Brachytherapy Needle Placement

Publikationstyp
Journal Article
Date Issued
2020-06-01
Sprache
English
Author(s)
Gerlach, Stefan  orcid-logo
Siebert, F.  
Schlaefer, Alexander  
Institut
Medizintechnische und Intelligente Systeme E-1  
TORE-URI
http://hdl.handle.net/11420/8911
Journal
Medical physics  
Volume
47
Issue
6
Start Page
e255
End Page
e2720
Citation
Medical physics 47 (6): e255-e2720 (2020-06-01)
Publisher DOI
10.1002/mp.14316
Scopus ID
2-s2.0-85087671962
PubMed ID
32634280
Purpose: Uncertainty due to tissue deformation affects treatment planningfor HDR prostate brachytherapy. Hence, position and orientation of the nee-dles are typically not optimized in inverse planning. Stochastic linear pro-gramming (SLP) has been proposed to consider uncertainty duringoptimization. Conventionally, it draws samples from a probability distribu-tion but increases the problem size substantially. We propose an efficientscheme allowing for fast identification of robust needle configurations. Methods: We account for uncertainty along the needle axis by deformingthe target using B-Spline interpolation and a random displacement of thevoxel at the needle tip. Conventional SLP adds constraints for each sample.The new weighted SLP (WSLP) scheme first creates all spatial distributionsand then establishes one discretized optimization problem where weights inthe objective function represent the likelihood of voxels falling into grid ele-ments. Both approaches and the original deterministic problem are comparedon a set of 5 patient cases. Moreover, we use WSLP on a large set of ran-domly generated needles to select a robust subset of needles. Evaluations aredone on 100 independently sampled deformations. Results: Depending onthe deformation and needle count, SLP and WSLP improve the target cover-age by 1.5 to 10.9 percentage points compared to deterministic optimization.There is no significant difference in target coverage between plans for SLPand WSLP (p = 0.98) but WLSP is substantially more efficient, taking belowten seconds instead of more than four hours when considering 100 sampleddeformations. Using WSLP to identify robust needle configurations, cover-age can be improved 0.7 to 3.3 percentage points over the most promisingneedle configurations identified by deterministic optimization. Conclusion: WSLP allows for fast optimization considering a dense sample of possibledeformations. Using WSLP, it is feasible to realize inverse planning incorpo-rating uncertainty in needle placement and to identify robust needle sets
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback