Options
New techniques for universality in unambiguous register automata
Publikationstyp
Conference Paper
Date Issued
2021-07
Sprache
English
Author(s)
First published in
Number in series
198
Article Number
129
Citation
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Contribution to Conference
Publisher DOI
Scopus ID
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing
Register automata are finite automata equipped with a finite set of registers ranging over the domain of some relational structure like (N; =) or (ℚ; <). Register automata process words over the domain, and along a run of the automaton, the registers can store data from the input word for later comparisons. It is long known that the universality problem, i.e., the problem to decide whether a given register automaton accepts all words over the domain, is undecidable. Recently, we proved the problem to be decidable in 2-ExpSpace if the register automaton under study is over (N; =) and unambiguous, i.e., every input word has at most one accepting run; this result was shortly after improved to 2-ExpTime by Barloy and Clemente. In this paper, we go one step further and prove that the problem is in ExpSpace, and in PSpace if the number of registers is fixed. Our proof is based on new techniques that additionally allow us to show that the problem is in PSpace for single-register automata over (ℚ;<). As a third technical contribution we prove that the problem is decidable (in ExpSpace) for a more expressive model of unambiguous register automata, where the registers can take values nondeterministically, if defined over (N; =) and only one register is used.
Subjects
Containment
Data languages
Equivalence
Language inclusion
Register automata
Unambiguity
Unambiguous
Universality