TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Approximation of Neural Networks for Verification
 
Options

Approximation of Neural Networks for Verification

Publikationstyp
Conference Paper
Date Issued
2019-04
Sprache
English
Author(s)
Bahnsen, Fin Hendrik  
Fey, Görschwin  orcid-logo
Institut
Eingebettete Systeme E-13  
TORE-URI
http://hdl.handle.net/11420/8153
Start Page
17
End Page
26
Citation
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2019)
Contribution to Conference
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2019)  
Scopus ID
2-s2.0-85096919029
Statistical learning methods enable the adaptation of artificial neural networks (ANN) to complex problems. Meanwhile, formal properties can be verified on small ANNs under simplified assumptions. First we show a simple algorithm to convert neural networks into a system of equations with boundary conditions. In particular, we discuss how non-linear functions may be approximated. In experiments we study the impact of this approximation on the validity on the proof of formal guarantees.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback