TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions
 
Options

Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

Citation Link: https://doi.org/10.15480/882.1620
Publikationstyp
Journal Article
Date Issued
2016-06-06
Sprache
English
Author(s)
Dyachenko, Pavel N.  
Molesky, Sean  
Petrov, Alexander  orcid-logo
Störmer, Michael  
Krekeler, Tobias  
Lang, Slawa  
Ritter, Martin  orcid-logo
Jacob, Zubin  
Eich, Manfred  
Institut
Optische und Elektronische Materialien E-12  
TORE-DOI
10.15480/882.1620
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/1623
Journal
Nature communications  
Volume
7
Start Page
Artikel-Nr. 11809
Citation
Nature communications 7: 11809 (2016)
Publisher DOI
10.1038/ncomms11809
Scopus ID
2-s2.0-84973279451
Publisher
Nature Publishing Group UK
Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C.
DDC Class
620: Ingenieurwissenschaften
Funding(s)
SFB 986, Teilproject C1 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik  
SFB 986: Zentralprojekt Z3 - Elektronenmikroskopie an multiskaligen Materialsystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

ncomms11809.pdf

Size

1.8 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback