TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020
 
Options

Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020

Publikationstyp
Journal Article
Date Issued
2022-04-22
Sprache
English
Author(s)
Wang, Wenting
Yin, Shuiqing  
Gao, Ge
Papalexiou, Simon Michael  
Wang, Zhixuan
TORE-URI
https://hdl.handle.net/11420/57678
Journal
Journal of hydrology  
Volume
610
Article Number
127851
Citation
Journal of Hydrology 610: 127851 (2022)
Publisher DOI
10.1016/j.jhydrol.2022.127851
Scopus ID
2-s2.0-85130207699
Publisher
Elsevier
Hourly precipitation data from 1971 to 2020, collected from 98 stations distributed across the Yellow River basin, were analyzed to detect changes in characteristics on rainfall and rainfall erosivity for all storms and storms with extreme erosivity (greater than 90<sup>th</sup> percentile). Results showed that over the past 50 years, rainfall erosivity at both event and seasonal scales over the whole basin increased significantly (p < 0.05) with rates of 5.46% and 6.86% decade<sup>-1</sup>, respectively, compared to the 1981–2010 average values. Approximate 80% of 98 stations showed increasing trends and 20% of stations had statistically significant trends (p < 0.1). The increase of rainfall erosivity resulted from the significant increasing trends of average storm precipitation (p < 0.1), duration (p < 0.1), rainfall energy (p < 0.05) and maximum 1-h intensity (p < 0.05). In addition, the total extreme erosivity showed significant upward trends at a relative rate of 6.05% decade<sup>-1</sup> (p < 0.05). Extreme erosivity storms occurred more frequently and with higher rainfall energy during the study period (p < 0.05). Trends for seasonal total and extreme erosivity were also estimated based on daily rainfall data, and the changing magnitudes were similar to those based on hourly rainfall data, which suggested daily rainfall can be applied to detect interannual and long-term variations of rainfall erosivity in the absence of rainfall data with higher resolution. It was suggested that soil and water conservation strategies and vegetation projects conducted within the Yellow River basin should be continued and enhanced in the future.
Subjects
Climate change | Extreme precipitation | Rainfall erosivity | Sediment reduction | Yellow River basin
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback