TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Bone healing in mice : does it follow generic mechano-regulation rules?
 
Options

Bone healing in mice : does it follow generic mechano-regulation rules?

Publikationstyp
Journal Article
Date Issued
2015-12-01
Sprache
English
Author(s)
Borgiani, Edoardo
Duda, Georg  
Willie, Bettina M.  
Checa Esteban, Sara  
TORE-URI
https://hdl.handle.net/11420/48220
Journal
Facta Universitatis  
Volume
13
Issue
3
Start Page
217
End Page
227
Citation
Facta Universitatis, Series: Mechanical Engineering 13 (3): 217-227 (2015)
Scopus ID
2-s2.0-84951277369
Publisher
University of Nis
Mechanical signals are known to influence bone healing progression. Previous studies have postulated inter-species differences in the mechanical regulation of the bone healing process. The aim of this study is to investigate whether mechanical “rules” explaining tissue formation patterns during bone healing in rat can be translated to a mouse model of bone regeneration. We have used an established mechano-biological computer model that uses finite element techniques to determine the mechanical conditions within the healing region and an agent-based approach to simulate cellular activity. The computer model is set up to simulate the course of bone healing in a femoral osteotomy model stabilized with an external fixator. Computer model predictions are compared to corresponding histological data. Generic mechano-regulation “rules” able to explain bone healing progression in the rat are not able to describe tissue formation over the course of healing in the mouse. According to the differentiation theory proposed by Prendergast, mechanical stimuli within the healing region immediately post-surgery are determined to be favorable for cartilage and fibrous tissue formation. In contrast, in vivo histological data showed initial intramembraneous bone formation at the periosteal side. These results suggest that in mice, bone does not require as much stability as is required in rat to reach timely healing. This finding emphasizes the need to further investigate the species-specific mechano-biological regulation of bone regeneration.
Subjects
Agent-based model
Finite element analysis
Mechano-biology
Mouse bone healing
Tissue differentiation
DDC Class
610: Medicine, Health
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback