TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Impact of hydrophobic surfaces on capillary wetting
 
Options

Impact of hydrophobic surfaces on capillary wetting

Publikationstyp
Journal Article
Date Issued
2018-04-01
Sprache
English
Author(s)
Kammerhofer, Jana  
Fries, Lennart  
Dupas, J.  
Forny, L.  
Heinrich, Stefan  
Palzer, Stefan  
Institut
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
TORE-URI
http://hdl.handle.net/11420/2432
Journal
Powder technology  
Volume
328
Start Page
367
End Page
374
Citation
Powder Technology (328): 367-374 (2018-04-01)
Publisher DOI
10.1016/j.powtec.2018.01.033
Scopus ID
2-s2.0-85041430350
The dynamic wetting behavior as first step in reconstitution of heterogeneous model food powders was investigated in the present work. Therefore, we studied the capillary rise of water into single pores and pore systems containing hydrophilic and hydrophobic walls. A two-wall setup was developed to realize the capillary rise in a single gap containing walls with two different contact angles but a constant pore size. The equilibrium penetration height was measured and compared to calculated heights using advancing contact angles inserted in a model equation. Wetting experiments in a Washburn setup were performed with respect to the investigation of water penetration into a heterogeneous pore network which leads to a variable pore size during the rise. In order to determine the effect of contact angle, three different glass materials at varied levels of hydrophobicity were prepared. Furthermore, a focus was put on understanding the impact of the pore network on the wetting kinetics by mixing two size fractions of glass beads. The equilibrium heights determined in heterogeneous single gaps fit well with the calculated heights by inserting advancing contact angles into the model equation. The results of the powder systems show a significant impact on the wetting with an increasing hydrophobic fraction, while an increased hydrophobic contact angle further increased the wetting time only at higher quantities of the hydrophobic component in the sample. Furthermore, our findings emphasize the complexity of wetting into a system with heterogeneity in pore size and contact angle.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback