TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting
 
Options

Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting

Citation Link: https://doi.org/10.15480/882.3759
Publikationstyp
Journal Article
Date Issued
2021-08-10
Sprache
English
Author(s)
Chirumamilla, Anisha  
Yang, Yuanqing  
Salazar, Maria H.  
Ding, Fei  
Wang, Deyong  
Kristensen, Peter Kjær  
Fojan, Peter  
Bozhevolnyi, Sergey  
Sutherland, Duncan S.  
Pedersen, Kjeld  
Chirumamilla, Manohar 
Institut
Optische und Elektronische Materialien E-12  
TORE-DOI
10.15480/882.3759
TORE-URI
http://hdl.handle.net/11420/10278
Journal
Materials today / Physics  
Volume
21
Article Number
100503
Citation
Materials Today Physics 21: 100503 (2021-11)
Publisher DOI
10.1016/j.mtphys.2021.100503
Scopus ID
2-s2.0-85112546023
Publisher
Elsevier
High-temperature stable emitters with spectral selective functionality are an absolute condition for efficient conversion of thermal radiation into electricity using thermophotovoltaic (TPV) systems. Usually, spectral selective emitters are made up of multilayered materials or geometrical structures resulting from complex fabrication processes. Here, we report a spectrally selective emitter based on a single metal layer coating of molybdenum (Mo) over a 3D dielectric pillar geometry. 3D Mo nanopillars are fabricated using large-area and cost-effective hole-mask colloidal lithography. These nanostructures show an absorptivity/emissivity of 95% below the cut-off wavelength of an InGaAsSb PV cell at 2.25 μm, and a sharp decline in absorptivity/emissivity in the near-infrared regions, approaching a low emissivity of 10%. The 3D Mo nanopillars show outstanding thermal/structural stability up to 1473 K for 24 h duration under Ar atmosphere and polarization and angle invariance up to 60° incidence angles. With a low-cost and scalable fabrication method, 3D Mo nanostructures provide tremendous opportunities in TPV and high temperature photonic/plasmonic applications.
Subjects
3D nanopillars
Gap plasmon resonator
High temperature stability
Molybdenum
Spectrally selective emitters
DDC Class
530: Physik
600: Technik
Funding(s)
SFB 986: Teilprojekt C1 - Strukturierte Emitter für effiziente und effektive Thermophotovoltaik  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
More Funding Information
F. Ding acknowledges the support from Villum Fonden (grant nos. 00022988 and37372). K. Pedersen acknowledges the financial support from the Novo Nordisk, grant number NNF20OC0064735.
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2542529321001644-main.pdf

Size

3.09 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback