TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. On minimal Ramsey graphs and Ramsey equivalence in multiple colours
 
Options

On minimal Ramsey graphs and Ramsey equivalence in multiple colours

Publikationstyp
Journal Article
Date Issued
2020
Sprache
English
Author(s)
Clemens, Dennis  orcid-logo
Liebenau, Anita  
Reding, Damian  
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/7670
Journal
Combinatorics, probability & computing  
Volume
29
Issue
4
Start Page
537
End Page
554
Citation
Combinatorics, probability & computing 29: 537-554 (2020)
Publisher DOI
10.1017/S0963548320000036
Scopus ID
2-s2.0-85082511554
ArXiv ID
1809.09232v2
Publisher
Cambridge Univ. Press
For an integer q≥ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H, yet no proper subgraph of G has this property then G is called q-Ramsey-minimal for H. Generalising a statement by Burr, Nešetřil and Rödl from 1977 we prove that, for q≥ 3, if G is a graph that is not q-Ramsey for some graph H then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H, as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences. (1) For 2≤ r< q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H. (2) For every q≥ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus, and chromatic number. (3) The collection { 𝓜q(H) : H is 3-connected or K₃} forms an antichain with respect to the subset relation, where 𝓜q(H) denotes the set of all graphs that are q-Ramsey-minimal for H. We also address the question which pairs of graphs satisfy 𝓜q(H₁)= 𝓜q(H₂), in which case H₁ and H₂ are called q-equivalent. We show that two graphs H₁ and H₂ are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q≥ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: Results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.
Subjects
Mathematics - Combinatorics
Mathematics - Combinatorics
05D10
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback