TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Wasserstein KL-divergence for Gaussian distributions
 
Options

Wasserstein KL-divergence for Gaussian distributions

Publikationstyp
Conference Paper
Date Issued
2025-10
Sprache
English
Author(s)
Datar, Adwait  
Data Science Foundations E-21  
Ay, Nihat  
Data Science Foundations E-21  
TORE-URI
https://hdl.handle.net/11420/58929
First published in
Lecture notes in computer science  
Number in series
16034
Start Page
91
End Page
101
Citation
7th International Conference on Geometric Science of Information, GSI 2025
Contribution to Conference
7th International Conference on Geometric Science of Information, GSI 2025  
Publisher DOI
10.1007/978-3-032-03921-7_10
Publisher
Springer
ISBN of container
978-3-032-03921-7
978-3-032-03920-0
We introduce a new version of the KL-divergence for Gaussian distributions which is based on Wasserstein geometry and referred to as WKL-divergence. We show that this version is consistent with the geometry of the sample space {R}^n. In particular, we can evaluate the WKL-divergence of the Dirac measures concentrated in two points which turns out to be proportional to the squared distance between these points.
Subjects
Wasserstein geometry
Kullback-Leibler divergence
Gaussian distributions
Otto metric
DDC Class
005.7: Data
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback