TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Identification of the concentration‐dependent viscoelastic constitutive parameters of gelatin by combining computational mechanics and machine learning
 
Options

Identification of the concentration‐dependent viscoelastic constitutive parameters of gelatin by combining computational mechanics and machine learning

Citation Link: https://doi.org/10.15480/882.4743
Publikationstyp
Conference Paper
Date Issued
2021-12
Sprache
English
Author(s)
Abdolazizi, Kian Philipp  
Linka, Kevin  
Sprenger, Johanna  
Neidhardt, Maximilian  
Schlaefer, Alexander  
Cyron, Christian J.  
Institut
Kontinuums- und Werkstoffmechanik M-15  
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.4743
TORE-URI
http://hdl.handle.net/11420/11562
Journal
Proceedings in applied mathematics and mechanics  
Volume
21
Issue
1
Article Number
e202100250
Citation
Proceedings in Applied Mathematics and Mechanics 21 (1): e202100250 (2021-12)
Contribution to Conference
92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, GAMM 2022  
Publisher DOI
10.1002/pamm.202100250
Publisher
Wiley-VCH
Since the mechanical properties of gelatin are similar to those of soft biological tissues, gelatin is a commonly used surrogate for real tissues, for example in safety engineering or medical engineering. Additional advantages of gelatin over real tissues are lower costs and better reproducibility of experiments. Therefore, constitutive models of gelatin are of great interest. In particular, it is important to capture the concentration dependence of the mechanical properties since the gelatin mass concentration significantly affects the constitutive behavior. To this end, we propose a hybrid approach linking artificial neural networks (ANN) and classical constitutive modeling to relate the gelatin's concentration to its viscoelastic material properties using indentation data.
Subjects
MLE@TUHH
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
I³-Lab - Modell-gestütztes maschinelles Lernen für die Weichgewebsmodellierung in der Medizin  
Projekt DEAL  
Publication version
acceptedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Proc Appl Math Mech - 2021 - Abdolazizi - Identification of the concentration%u2010dependent viscoelastic constitutive.pdf

Size

2.31 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback