Publication: Absence of absolutely continuous spectrum for the Kirchhoff Laplacian on radial trees
cris.virtual.author-gnd | 134284410 | |
cris.virtual.author-gnd | 1030178798 | |
cris.virtual.author-gnd | 1184400199 | |
cris.virtual.author-orcid | 0000-0001-9621-3788 | |
cris.virtual.author-orcid | 0000-0001-9182-8687 | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | Mathematik E-10 | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-gnd | 13366db6-e0c6-48a1-8440-966a7ce842ac | |
cris.virtualsource.author-gnd | bd2f5fd1-1e0d-4c5e-9910-4a398f24d19d | |
cris.virtualsource.author-gnd | d0e23a1e-8c71-401c-9126-aef01b2ff52f | |
cris.virtualsource.author-orcid | 13366db6-e0c6-48a1-8440-966a7ce842ac | |
cris.virtualsource.author-orcid | bd2f5fd1-1e0d-4c5e-9910-4a398f24d19d | |
cris.virtualsource.author-orcid | d0e23a1e-8c71-401c-9126-aef01b2ff52f | |
cris.virtualsource.department | 13366db6-e0c6-48a1-8440-966a7ce842ac | |
cris.virtualsource.department | bd2f5fd1-1e0d-4c5e-9910-4a398f24d19d | |
cris.virtualsource.department | d0e23a1e-8c71-401c-9126-aef01b2ff52f | |
datacite.resourceType | Other | en_US |
datacite.resourceTypeGeneral | Other | en_US |
dc.contributor.author | Exner, Pavel | |
dc.contributor.author | Seifert, Christian | |
dc.contributor.author | Stollmann, Peter | |
dc.date.accessioned | 2021-07-23T07:22:01Z | |
dc.date.available | 2021-07-23T07:22:01Z | |
dc.date.issued | 2013-07-12 | |
dc.description.abstract | In this paper, we prove that the existence of absolutely continuous spectrum of the Kirchhoff Laplacian on a radial metric tree graph together with a finite complexity of the geometry of the tree implies that the tree is in fact eventually periodic. This complements the results by Breuer and Frank in (Rev Math Phys 21(7):929-945, 2009) in the discrete case as well as for sparse trees in the metric case. © 2013 Springer Basel. | en |
dc.identifier.citation | Annales Henri Poincare 15 (6): 1109-1121 (2014) | de_DE |
dc.identifier.scopus | 2-s2.0-84901193662 | de_DE |
dc.identifier.uri | http://hdl.handle.net/11420/9949 | |
dc.language.iso | en | de_DE |
dc.publisher | Springer International Publishing AG | de_DE |
dc.relation.ispartof | Annales Henri Poincaré | de_DE |
dc.relation.issn | 1424-0661 | de_DE |
dc.subject.ddc | 510: Mathematik | de_DE |
dc.title | Absence of absolutely continuous spectrum for the Kirchhoff Laplacian on radial trees | de_DE |
dc.type | Journal Article | de_DE |
dc.type.casrai | Other | en_US |
dc.type.dini | Other | en_US |
dc.type.driver | Other | en_US |
dcterms.DCMIType | Other | en_US |
dspace.entity.type | Publication | |
local.status.inpress | false | de_DE |
local.type.legacy | Article | |
oaire.citation.endPage | 1121 | de_DE |
oaire.citation.issue | 6 | de_DE |
oaire.citation.startPage | 1109 | de_DE |
oaire.citation.volume | 15 | de_DE |
tuhh.abstract.english | In this paper, we prove that the existence of absolutely continuous spectrum of the Kirchhoff Laplacian on a radial metric tree graph together with a finite complexity of the geometry of the tree implies that the tree is in fact eventually periodic. This complements the results by Breuer and Frank in (Rev Math Phys 21(7):929-945, 2009) in the discrete case as well as for sparse trees in the metric case. © 2013 Springer Basel. | de_DE |
tuhh.publication.institute | Mathematik E-10 | de_DE |
tuhh.publisher.doi | 10.1007/s00023-013-0274-4 | |
tuhh.type.opus | Other | en_US |