TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Discussion of "measuring and Understanding Contact Area at the Nanoscale: A Review" (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 061101)
 
Options

Discussion of "measuring and Understanding Contact Area at the Nanoscale: A Review" (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 061101)

Publikationstyp
Journal Article
Date Issued
2017-11-01
Sprache
English
Author(s)
Ciavarella, Michele  
Papangelo, Antonio 
Institut
Strukturdynamik M-14  
TORE-URI
http://hdl.handle.net/11420/3680
Journal
Applied mechanics reviews  
Volume
69
Issue
6
Article Number
065502
Citation
Applied Mechanics Reviews 6 (69): 065502 (2017-11-01)
Publisher DOI
10.1115/1.4038188
Scopus ID
2-s2.0-85032938366
Jacobs and Martini (JM) give a nice review of direct measurement methods (in situ electron microscopy), as well as indirect methods (which are based on contact resistance, contact stiffness, lateral forces, and topography) for measurement of the contact area, mostly at nanoscale. They also discuss simulation techniques and theories from single-contact continuum mechanics, to multicontact continuum mechanics and atomistic accounting. As they recognize, even at very small scales, "multiple-contacts" case occurs, and a returning problem is that the "real contact area" is often an ill-defined, "magnification" dependent quantity. The problem remains to introduce a truncation to the fractal roughness process, what was called in the 1970s "functional filtering." The truncation can be "atomic roughness" or can be due to adhesion, or could be the resolution of the measuring instrument. Obviously, this also means that the strength (hardness) at the nanoscale is ill-defined. Of course, it is perfectly reasonable to fix the magnification and observe the dependence of contact area, and strength, on any other variable (speed, temperature, time, etc.).
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback