TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Influence of the bow shape on loads in high and steep waves
 
Options

Influence of the bow shape on loads in high and steep waves

Publikationstyp
Conference Paper
Date Issued
2010-12-01
Sprache
English
Author(s)
Clauss, Günther F.  
Klein, Marco  orcid-logo
Dudek, Matthias  
TORE-URI
http://hdl.handle.net/11420/4518
Volume
2
Start Page
159
End Page
170
Citation
International Conference on Offshore Mechanics and Arctic Engineering - OMAE: 159-170 (2010-12-01)
Contribution to Conference
International Conference on Offshore Mechanics and Arctic Engineering - OMAE 2010  
Publisher DOI
10.1115/OMAE2010-20142
To ensure survival of floating structures in rough seas, a precise knowledge of global and local loads is an inevitable integral part for safe design. One of the key parameters is the vertical bending moment. Not only vertical forces but-as previous investigations revealed-also longitudinal forces significantly contribute to the vertical wave bending moment. Three segmented ships, equipped with force transducers, are investigated systematically in high and steep regular waves and in harsh wave environments at several cruising speeds to identify the structural loads. The model tests are carried out in the seakeeping basin of the Technical University Berlin at a scale of 1:70. To cover possible influences of the bow geometry, three different types of vessels are chosen, a bulk carrier with a full bow, a Ro/Ro vessel and a container vessel with a V-shaped frame design. For identifying the influence of the wave height and steepness on the vertical bending moment, model tests in regular waves with different crest/trough asymmetries are performed with the Ro/Ro vessel and the bulk carrier. The program can be subdivided into three parts, each characterized by the same wave lengths with varying wave steepness. The first test series includes regular waves with small amplitudes, thus linear wave theory can be applied. In the second part the same (regular) wave lengths have been generated with increased wave heights, i.e. increasing crest/trough asymmetries and wave profiles within Stokes II domain. During the last part of the experimental program the wave heights are further increased to reach wave profiles within Stokes III domain. For the evaluation of the test results in regular waves-in particular in high steep waves-the results are compared to the respective Response Amplitude Operator determined by the transient wave package technique. Here the focus lies on the asymmetry of the hogging and sagging loads with respect to the wave steepness and the bow geometry of the investigated ship models. Furthermore, the influence of the freeboard height on the vertical bending moment is analysed. For this purpose a container vessel is investigated with two different freeboard configurations in a harsh wave environment. © 2010 by ASME.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback