TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Simultaneous enhancement of actuation strain and mechanical strength of nanoporous Ni–Mn actuators
 
Options

Simultaneous enhancement of actuation strain and mechanical strength of nanoporous Ni–Mn actuators

Citation Link: https://doi.org/10.15480/882.3695
Publikationstyp
Journal Article
Date Issued
2021-05-13
Sprache
English
Author(s)
Cheng, Chuan  
Lührs, Lukas  
Krekeler, Tobias  
Institut
Werkstoffphysik und -technologie M-22  
Betriebseinheit Elektronenmikroskopie M-26  
TORE-DOI
10.15480/882.3695
TORE-URI
http://hdl.handle.net/11420/9991
Journal
Advanced electronic materials  
Volume
7
Issue
7
Article Number
2100381
Citation
Advanced Electronic Materials 7 (7): 2100381 (2021-07-01)
Publisher DOI
10.1002/aelm.202100381
Scopus ID
2-s2.0-85105623538
Publisher
Wiley-VCH Verlag GmbH & Co. KG
Metallic electrochemical actuators convert electrical energy into mechanical energy via charge-induced strain at the nanoporous metal/electrolyte interface. To enhance the actuation amplitude, a general choice is to increase the electrode surface area to elevate the charge capacity. However, a large surface area is detrimental to the actuation stability and mechanical strength of the actuator, such as irreversible volume shrinkage due to surface coarsening. Here, this critical issue can be mitigated by introducing a secondary actuation metal (Mn) into the network of a primary actuation metal (Ni). A nanoporous Ni–Mn actuator is synthesized by chemical dealloying with a controllable Mn content by adjusting dealloying conditions. Mn enriched nanowires are entangled with much larger sized Ni nanoligaments throughout the whole nanoporous network. Mn contributes a two-electron-transfer redox of Mn(OH)2/MnOOH/MnO2, which induces reversible volume change via H+ intercalation/deintercalation. It is more efficient for strain generation than a one-electron-transfer redox of Ni(OH)2/NiOOH in the host. A recorded high reversible strain of 1.94% is obtained. Simultaneously, the mechanical strength of the actuator exponentially increases with the relative density due to the introduction of the secondary actuation metal.
Subjects
charge-induced strain
dealloying
metallic actuators
nanoporous metals
pesudocapacity
DDC Class
530: Physik
600: Technik
Funding(s)
SFB 986: Teilprojekt B2 - Feste und leichte Hybridwerkstoffe auf Basis nanoporöser Metalle  
Projekt DEAL  
Funding Organisations
Alexander von Humboldt-Stiftung  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

aelm.202100381.pdf

Size

6.38 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback