TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Anti-scale effects of select organic macromolecules on gypsum bulk and surface crystallization during reverse osmosis desalination
 
Options

Anti-scale effects of select organic macromolecules on gypsum bulk and surface crystallization during reverse osmosis desalination

Publikationstyp
Journal Article
Date Issued
2018-06-08
Author(s)
Benecke, Jan  
Rozova, Jelena  
Ernst, Mathias  orcid-logo
Institut
Wasserressourcen und Wasserversorgung B-11  
TORE-URI
http://hdl.handle.net/11420/2610
Journal
Separation and purification technology  
Volume
198
Start Page
68
End Page
78
Citation
Separation and Purification Technology (198): 68-78 (2018-06-08)
Publisher DOI
10.1016/j.seppur.2016.11.068
Scopus ID
2-s2.0-85008179604
Reverse osmosis desalination is increasingly applied to address the global challenge of water scarcity and pollution of available water resources. This study investigates interactions of select organic macromolecules – sodium alginate, humic acid and bovine serum albumin – with the inherent operational limitation of membrane scaling caused by gypsum (CaSO4·2H2O) bulk and surface crystallization. Tailored operation of a bench-scale reverse osmosis system demonstrated that severe concentration polarization provoked gypsum surface crystallization as opposed to bulk crystallization and vice versa. Gypsum bulk crystallization was significantly retarded by coexisting macromolecules. Macromolecular adsorption onto growth sites of crystals appeared to be the underlying mechanism of retardation. Supplemental crystallization experiments were performed to determine the prolongation of gypsum induction times in the presence of macromolecules. Macromolecular properties and concentration as well as crystallization kinetics determined the extent of retardation. Scaling by gypsum surface crystallization, however, was enhanced in the presence of sodium alginate and humic acid. The developed macromolecular fouling layers shifted gypsum scaling mechanisms from bulk to surface crystallization. This was most clearly observed for sodium alginate, which caused strongest membrane fouling. A correlation between the extent of fouling and the enhancement of surface crystallization is suggested. Hence, any potential anti-scale effects exhibited by various organic macromolecules, may be superposed by enhanced concentration polarization due to macromolecular fouling.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback