Options
Information Bottleneck Decoding of Rate-Compatible 5G-LDPC Codes
Publikationstyp
Conference Paper
Date Issued
2020-06
Sprache
English
Institut
TORE-URI
Article Number
9149304
Citation
IEEE International Conference on Communications (ICC 2020)
Contribution to Conference
Publisher DOI
Scopus ID
The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding.