TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Analysing visual-inertial odometry algorithms for the localization of industrial autonomous mobile robots in intralogistics and manufacturing
 
Options

Analysing visual-inertial odometry algorithms for the localization of industrial autonomous mobile robots in intralogistics and manufacturing

Citation Link: https://doi.org/10.15480/882.13741
Other Titles
Analyse visueller Odometrie-Algorithmen für die Lokalisierung von autonomen mobilen Industrierobotern in der Intralogistik und Fertigung
Publikationstyp
Conference Paper
Date Issued
2024-09-26
Sprache
English
Author(s)
Krishnamurthy, Aishwarya
Adamanov, Asan 
Technische Logistik W-6  
Chinnakkonda Ravi, Adithya Kumar  
Braun, Philipp Maximilian  orcid-logo
Technische Logistik W-6  
Rose, Hendrik Wilhelm 
Technische Logistik W-6  
Küstner, David
TORE-DOI
10.15480/882.13741
TORE-URI
https://hdl.handle.net/11420/52138
Journal
Logistics journal / Proceedings  
Citation
20. Fachkolloquium Logistik, 2024
Contribution to Conference
20. Fachkolloquium Logistik, 2024  
Publisher DOI
10.2195/lj_proc_krishnamurthy_en_202410_01
Publisher Link
https://www.logistics-journal.de/logistics-journal/article/view/35/27
Scopus ID
2-s2.0-85214524409
Publisher
WGTL
Peer Reviewed
true
The use of Autonomous Mobile Robots (AMR) plays asignificant role inthe automation of intralogisticsprocesses. For safe operation and navigation, high locali-zation accuracy is required. Common AMR systems rely oncost-intensive sensors such as LIDAR scanners. To en-able widespread use of AMRs the industry alternative so-lutions are required. This study explores stereo camera-based visual SLAM as a cost-effective alternative to con-ventional 3D LIDAR-based localization solutions for an industrial robot application. Using Stereolabs ZED 2I and Intel RealSense D455 cameras with ORB-SLAM3 and OpenVINS algorithms, we evaluated Mean Absolute Pose Error (APE) and Root Mean Square Pose Error (RPE). The highest accuracy was achieved with the ZED 2I with OpenVINS with an APE of 0.17m and an RPE of 0.02m while the use of a RealSense D455 showed an APE of 0.33m with an RPE of 0.02m
DDC Class
600: Technology
Publication version
publishedVersion
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

krishnamurthy_en_2024.pdf

Size

580.98 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback