TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Ultra-fast parallel magnetic resonance imaging of granular systems
 
Options

Ultra-fast parallel magnetic resonance imaging of granular systems

Publikationstyp
Conference Paper
Date Issued
2015
Sprache
English
Author(s)
Penn, Alexander  orcid-logo
Pruessmann, Klaas Paul  
Müller, Christoph Rüdiger  
TORE-URI
http://hdl.handle.net/11420/8087
Citation
March Meeting of the American Physical Society (2015)
Contribution to Conference
March Meeting of the American Physical Society 2015  
Publisher Link
https://ui.adsabs.harvard.edu/abs/2015APS..MARS44006P/abstract
Several non-intrusive techniques have been applied to probe the dynamics of two-phase granular systems, with the most prominent examples being X-ray tomography, positron emission particle tracking (PEPT), electrical capacitance tomography and magnetic resonance imaging (MRI). MRI comes with the particular advantage that by implementing suitable pulse sequences not only spin densities (i.e. voidage), but also velocity, acceleration, diffusion and chemical reactions can be measured. However, so far the investigation of two-phase granular systems has been performed on relatively small-bore systems (max. diameter 60 mm). Such systems are, however, heavily influenced by wall effects. Furthermore, largely only single-coil detection has been employed, limiting severely the temporal resolution of the data acquisition. Here, we report the acquisition of ultra-fast MRI measurements in large volume vessels using medical MRI scanners. Specifically, parallel MRI, i.e. the simultaneous use of multiple receiver coils, has been exploited to speed up the data acquisition. In combination with advanced pulse sequences, we were able to probe the rapid dynamics (voidage and velocity measurements) of gas-solid systems.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback