TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Poly(3-hexylthiophene)s Functionalized with N-Heterocyclic Carbenes as Robust and Conductive Ligands for the Stabilization of Gold Nanoparticles
 
Options

Poly(3-hexylthiophene)s Functionalized with N-Heterocyclic Carbenes as Robust and Conductive Ligands for the Stabilization of Gold Nanoparticles

Publikationstyp
Journal Article
Date Issued
2021-02-19
Sprache
English
Author(s)
Sun, Ningwei  
Zhang, Shi Tong  
Simon, Frank  
Steiner, Anja Maria  
Schubert, Jonas  
Du, Yixuan  
Qiao, Zhi  
Fery, Andreas  
Lissel, Franziska  
TORE-URI
http://hdl.handle.net/11420/15097
Journal
Angewandte Chemie, International Edition  
Volume
60
Issue
8
Start Page
3912
End Page
3917
Citation
Angewandte Chemie - International Edition 60 (8): 3912-3917 (2021-02-19)
Publisher DOI
10.1002/anie.202012216
Scopus ID
2-s2.0-85098125940
PubMed ID
33135279
Recently, N-heterocyclic carbenes (NHCs) are explored as anchor groups to bind organic ligands to colloidal gold (i.e. gold nanoparticles, Au NPs), yet these efforts are confined to non-conjugated ligands so far—that is, focused solely on exploiting the stability aspect. Using NHCs to link Au NPs and electronically active organic components, for example, conjugated polymers (CPs), will allow capitalizing on both the stability as well as the inherent conductivity of the NHC anchors. Here, we report three types of Br-NHC-Au-X (X=Cl, Br) complexes, which, when used as starting points for Kumada polymerizations, yield regioregular poly(3-hexylthiophenes)-NHC-Au (P3HTs-NHC-Au) with narrow molecular weight distributions. The corresponding NPs are obtained via direct reduction and show excellent thermal as well as redox stability. The NHC anchors enable electron delocalization over the gold/CP interface, resulting in an improved electrochromic response behavior in comparison with P3HT-NHC-Au.
Subjects
chain growth polymerization
conjugated polymers
gold nanoparticles
hybrid materials
N-heteroyclic carbenes
DDC Class
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback