TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Wind turbine rotors in surge motion : new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations
 
Options

Wind turbine rotors in surge motion : new insights into unsteady aerodynamics of floating offshore wind turbines (FOWTs) from experiments and simulations

Citation Link: https://doi.org/10.15480/882.9446
Publikationstyp
Journal Article
Date Issued
2024-03-20
Sprache
English
Author(s)
Schulz, Christian  orcid-logo
Fluiddynamik und Schiffstheorie M-8  
Netzband, Stefan  
Fluiddynamik und Schiffstheorie M-8  
Özinan, Umut
Cheng, Po Wen  
Abdel-Maksoud, Moustafa  orcid-logo
Fluiddynamik und Schiffstheorie M-8  
TORE-DOI
10.15480/882.9446
TORE-URI
https://hdl.handle.net/11420/46844
Journal
Wind energy science  
Volume
9
Issue
3
Start Page
665
End Page
695
Citation
Wind Energy Science 9 (3): 665-695 (2024)
Publisher DOI
10.5194/wes-9-665-2024
Scopus ID
2-s2.0-85188454768
Publisher
Copernicus Publications
An accurate prediction of the unsteady loads acting on floating offshore wind turbines (FOWTs) under consideration of wave excitation is crucial for a resource-efficient turbine design. Despite a considerable number of simulation studies in this area, it is still not fully understood which unsteady aerodynamic phenomena have a notable influence on the loads acting on a wind turbine rotor in motion. In the present study, investigations are carried out to evaluate the most relevant unsteady aerodynamic phenomena for a wind turbine rotor in surge motion. As a result, inflow conditions are determined for which a significant influence of these phenomena on the rotor loads can be expected. The experimental and numerical investigations are conducted on a two-bladed wind turbine rotor subjected to a tower-top surge motion. A specialised wind tunnel test rig has been developed to measure the aerodynamic torque response of the rotor subjected to surge motions with moderate frequencies. The torque measurements are compared to two free-vortex-wake (FVW) methods, namely a panel method and a lifting-line method. Unsteady contributions that cannot be captured using quasi-steady modelling have not been detected in either the measurements or the simulations in the covered region of motions ranging from a rotor reduced frequency of 0.55 to 1.09 and with motion velocity amplitudes of up to 9 % of the wind speed. The surge motion frequencies were limited to a moderate range (5 to 10 Hz) due to vibrations occurring in the experiments. Therefore, a numerical study with an extended range of motion frequencies using the panel and the lifting-line method was performed. The results from both FVW methods reveal significant unsteady contributions of the surge motions to the torque and thrust response that have not been reported in the recent literature. Furthermore, the results show the presence of the returning wake effect, which is known from helicopter aerodynamics. Additional simulations of the UNAFLOW scale model and the IEA 15 MW rotor demonstrate that the occurrence of the returning wake effect is independent from the turbine but determined by the ratio of 3P and surge motion frequency. In the case of the IEA 15 MW rotor, a notable impact of the returning wake effect was found at surge motion frequencies in the range of typical wave periods. Finally, a comparison with OpenFAST simulations reveals notable differences in the modelling of the unsteady aerodynamic behaviour in comparison to the FVW methods.
DDC Class
620: Engineering
Funding(s)
Open-Access-Publikationskosten / 2022-2024 / Technische Universität Hamburg (TUHH)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

wes-9-665-2024.pdf

Type

Main Article

Size

7.92 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback