Options
Dealloying-based metal-polymer composites for biomedical applications
Publikationstyp
Journal Article
Publikationsdatum
2018-03-15
Sprache
English
Author
TORE-URI
Enthalten in
Volume
146
Start Page
290
End Page
294
Citation
Scripta Materialia (146): 290-294 (2018-03-15)
Publisher DOI
Scopus ID
Here, we developed interpenetrating-phase metal-polymer composites mimicking mechanical behavior of cortical bone and occupying previously unclaimed region at the Ashby diagram in the area of intermediate strength and low stiffness. The composites consist of dealloying-based open porous TixHf100 − x alloys (scaffolds) impregnated by polymer. The scaffolds significantly contribute to strength (215–266 MPa) and stiffness (15.6–20.8 GPa) of the composites while the polymer phase provides their high strain rate sensitivity (0.037–0.044). Tuning scaffolds' connectivity by preloading and/or their chemical composition allows fine optimization of composites' mechanical properties. The results suggest that the composites may provide a basis for promising future implant materials.