TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Entwicklung von Methoden zum KI-gestützten Propellerentwurf im frühen Entwurfsstadium
 
Options

Entwicklung von Methoden zum KI-gestützten Propellerentwurf im frühen Entwurfsstadium

Citation Link: https://doi.org/10.15480/882.4653
Publikationstyp
Master Thesis
Date Issued
2022-08-10
Sprache
German
Author(s)
Strecker, Maike  orcid-logo
Advisor
Abdel-Maksoud, Moustafa  orcid-logo
Referee
von Bock und Polach, Rüdiger Ulrich Franz  orcid-logo
Title Granting Institution
Technische Universität Hamburg
Place of Title Granting Institution
Hamburg
Examination Date
2022-08-22
Institut
Fluiddynamik und Schiffstheorie M-8  
TORE-DOI
10.15480/882.4653
TORE-URI
http://hdl.handle.net/11420/13815
Citation
Technische Universität Hamburg (2022)
The aim of the work is to develop an AI-based design method for the creation of a propeller geometry that serves as a starting point for the design process. It should be possible to consider boundary conditions such as the maximum diameter, the required thrust or the available power. Based on a literature review regarding possible AI approaches or methods, these are evaluated in terms of their suitability for supporting propeller design. They range from simple regressions to artificial neural networks. Subsequently, the AI approaches suitable for the task are to be selected and corresponding models are to be implemented from them under consideration of the mentioned boundary conditions. The models are to be trained on the basis of available data from propeller series. In order to assess their quality, the calculated and available free-running characteristics are to be compared for an example propeller. Based on the comparison, neural networks are best suited for this application.
Subjects
Propeller
Entwurf
Maschinelles Lernen
DDC Class
600: Technik
620: Ingenieurwissenschaften
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

MA_Strecker.pdf

Size

3.86 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback