Options
Bioreaction engineering leading to efficient synthesis of L-glyceraldehyd-3-phosphate
Publikationstyp
Journal Article
Publikationsdatum
2016-12-19
Sprache
English
Institut
TORE-URI
Enthalten in
Volume
12
Issue
3
Article Number
1600625
Citation
Biotechnology Journal 3 (12): 1600625 (2017-03-01)
Publisher DOI
Scopus ID
Publisher
Wiley-VCH
Enantiopure L-glyceraldehyde-3-phosphate (L-GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L-glyceraldehyde (L-GA) by ATP is used for the synthesis of L-GAP. L-GAP has a half-life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg2+ to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca2+, but not by L-GAP and inorganic orthophosphate. Moreover, equal amount of Ca2+ exerts a different degree of inhibition relative to the activity without the addition of Ca2+ depending on the Mg2+ to ATP molar ratio. If the Mg2+ to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred-tank reactor is the most efficient process for the synthesis of L-GAP.
Schlagworte
Glycerol kinase
L-Glyceraldehyde-3-phosphate instability
Mg to ATP ratio 2+
Reaction kinetics
Reactor simulation
DDC Class
570: Biowissenschaften, Biologie
620: Ingenieurwissenschaften