TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Analysing the feasibility of an automated AI-based classifier for detecting paranasal anomalies in the maxillary sinus
 
Options

Analysing the feasibility of an automated AI-based classifier for detecting paranasal anomalies in the maxillary sinus

Publikationstyp
Journal Article
Date Issued
2023-05-12
Sprache
English
Author(s)
Hoffmann, Anna Sophie  
Bhattacharya, Debayan  
Medizintechnische und Intelligente Systeme E-1  
Becker, Benjamin Tobias  
Beyersdorff, Dirk  
Petersen, Elina  
Petersen, Marvin  
Eggert, Dennis  
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
Betz, Christian Stephan  
TORE-URI
https://hdl.handle.net/11420/45006
Journal
Laryngo-Rhino-Otologie  
Volume
102
Issue
S 02
Start Page
200
Citation
Laryngo-Rhino-Otologie 102 (S 02): 200 (2023)
Publisher DOI
10.1055/s-0043-1767093
Publisher
Thieme
Large scale population studies have been performed to analyse the rate of finding sinus opacities in cranial MRIs. It is of interest whether there are findings requiring clarification. Using AI-based methods can automate the detection of the sinus opacities and reduce the workload of clinicians. In this work, a method for AI-based classification was developed in order to automatically recognise paranasal sinus opacities
DDC Class
004: Computer Sciences
610: Medicine, Health
621: Applied Physics
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback