TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Tool path strategies for single point incremental forming of fiber-reinforced thermoplastic sheets
 
Options

Tool path strategies for single point incremental forming of fiber-reinforced thermoplastic sheets

Citation Link: https://doi.org/10.15480/882.9529
Publikationstyp
Conference Paper
Date Issued
2024-05-15
Sprache
English
Author(s)
Rath, Jan-Erik  orcid-logo
Flugzeug-Produktionstechnik M-23  
Schüppstuhl, Thorsten  orcid-logo
Flugzeug-Produktionstechnik M-23  
TORE-DOI
10.15480/882.9529
TORE-URI
https://hdl.handle.net/11420/47315
Journal
Materials research proceedings  
Volume
41
Start Page
641
End Page
650
Citation
27th International ESAFORM Conference on Material Forming, ESAFORM 2024
Contribution to Conference
27th International ESAFORM Conference on Material Forming, ESAFORM 2024  
Publisher DOI
10.21741/9781644903131-71
Scopus ID
2-s2.0-85195987038
Publisher
Materials Research Forum LLC
Peer Reviewed
true
Continuous fiber-reinforced thermoplastics (FRTP) are gaining increasing interest as a lightweight material. However, production processes such as thermoforming rely on costly molds, making them unsuitable for individual parts or small series production. Therefore, realizing an incremental sheet forming (ISF) process for FRTP is very desirable. As direct application of ISF to FRTP is impossible, researchers placed the FRTP between two metal sheets, allowing it to slide between them during single point incremental forming (SPIF). So far, only traditional tool path strategies for metal SPIF, such as the z-level or the spiral approach, have been used, which do not consider the draping requirements of woven reinforcement fibers. To optimize the forming process and prevent the development of wrinkles or other defects in the organo sheet, we propose and test novel tool path strategies for the SPIF of an FRTP sandwiched between two metal sheets. Results show that the proposed strategies have a positive impact on part quality, as fiber orientation-based tool path approaches show less wrinkling and higher part accuracy in SPIF without support.
Subjects
Composite
Fiber Reinforced Plastic
Incremental Sheet Forming
Tool Path
DDC Class
620: Engineering
670: Manufacturing
Funding(s)
Entwicklung eines Prozesses zur inkrementellen, formwerkzeuglosen Umformung faserverstärkter Halbzeuge, sowie Umsetzung einer digitalen Prozesskette zur Planung- und Steuerung  
Funding Organisations
Bundesministerium für Wirtschaft und Klimaschutz (BMWK)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/3.0/
Loading...
Thumbnail Image
Name

71.pdf

Type

Main Article

Size

2.14 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback