TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production
 
Options

Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production

Publikationstyp
Journal Article
Date Issued
2011-05-14
Sprache
English
Author(s)
Chen, Zhen  
Rappert, Sugima  
Sun, Jibin  
Zeng, An-Ping  orcid-logo
Institut
Bioprozess- und Biosystemtechnik V-1  
TORE-URI
http://hdl.handle.net/11420/14870
Journal
Journal of biotechnology  
Volume
154
Issue
4
Start Page
248
End Page
254
Citation
Journal of Biotechnology 154 (4): 248-254 (2011)
Publisher DOI
10.1016/j.jbiotec.2011.05.005
Scopus ID
2-s2.0-79960434236
PubMed ID
21609739
Publisher
Elsevier Science
Deregulation of allosteric inhibition of enzymes is a challenge for strain engineering and has been achieved so far primarily by random mutation and trial-and-error. In this work, we used aspartokinase, an important allosteric enzyme for industrial amino acids production, to demonstrate a predictive approach that combines protein dynamics and evolution for a rational reengineering of enzyme allostery. Molecular dynamic simulation of aspartokinase III (AK3) from Escherichia coli and statistical coupling analysis of protein sequences of the aspartokinase family allowed to identify a cluster of residues which are correlated during protein motion and coupled during the evolution. This cluster of residues forms an interconnected network mediating the allosteric regulation, including most of the previously reported positions mutated in feedback insensitive AK3 mutants. Beyond these mutation positions, we have successfully constructed another twelve targeted mutations of AK3 desensitized toward lysine inhibition. Six threonine-insensitive mutants of aspartokinase I-homoserine dehydrogenase I (AK1-HD1) were also created based on the predictions. The proposed approach can be widely applied for the deregulation of other allosteric enzymes.
Subjects
Allosteric regulation
Aspartokinase
Molecular dynamics simulation
Statistical coupling analysis
DDC Class
570: Biowissenschaften, Biologie
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback