TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Two-Stage Dual Dynamic Programming with Application to Nonlinear Hydro Scheduling
 
Options

Two-Stage Dual Dynamic Programming with Application to Nonlinear Hydro Scheduling

Publikationstyp
Preprint
Date Issued
2019-02-22
Author(s)
Flamm, Benjamin  
Eichler, Annika  
Warrington, Joseph  
Lygeros, John  
TORE-URI
https://hdl.handle.net/11420/45108
Citation
arXiv: 1902.08699 (2019)
Publisher DOI
10.48550/arXiv.1902.08699
ArXiv ID
1902.08699v2
We present an approximate method for solving nonlinear control problems over long time horizons, in which the full nonlinear model is preserved over an initial part of the horizon, while the remainder of the horizon is modeled using a linear relaxation. As this approximate problem may still be too large to solve directly, we present a Benders decomposition-based solution algorithm that iterates between solving the nonlinear and linear parts of the horizon. This extends the Dual Dynamic Programming approach commonly employed for optimization of linearized hydro power systems. We prove that the proposed algorithm converges after a finite number of iterations, even when the nonlinear initial stage problems are solved inexactly. We also bound the suboptimality of the split-horizon method with respect to the original nonlinear problem, in terms of the properties of a map between the linear and nonlinear state-input trajectories. We then apply this method to a case study concerning a multiple reservoir hydro system, approximating the nonlinear head effects in the second stage using McCormick envelopes. We demonstrate that near-optimal solutions can be obtained in a shrinking horizon setting when the full nonlinear model is used for only a short initial section of the horizon. For this example, the approach is shown to be more practical than both conventional dynamic programming and a multi-cell McCormick envelope approximation from literature.
Subjects
math.OC
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback