TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Simulation of non-classical diffusion in polymers
 
Options

Simulation of non-classical diffusion in polymers

Publikationstyp
Journal Article
Date Issued
2014-05-04
Sprache
English
Author(s)
Wilmers, Jana  
Bargmann, Swantje  
Institut
Kontinuums- und Werkstoffmechanik M-15  
TORE-URI
http://hdl.handle.net/11420/9907
Journal
Heat and mass transfer  
Volume
50
Issue
11
Start Page
1543
End Page
1552
Citation
Heat and Mass Transfer/Waerme- und Stoffuebertragung 50 (11): 1543-1552 (2014)
Publisher DOI
10.1007/s00231-014-1365-6
Scopus ID
2-s2.0-84911005920
Publisher
Springer
The present contribution is concerned with the computational modelling of non-classical diffusion in amorphous polymers. Special attention is paid to the limiting case of Case II diffusion. Application of the dual-phase-lag concept to Fick’s first law leads to a description of Case II behaviour. The change in material properties during the glass transition is explicitly accounted for by a concentration dependent formulation of the material parameters. The proposed model is well suited for modelling the sharp diffusion front and linear uptake kinetics associated with Case II diffusion. Application of a concentration dependent diffusion coefficient reduces the concentration gradient behind the front to a minimum. For the solution procedure, a finite element scheme in space and a finite difference method in time are applied. Three-dimensional numerical results are presented for classical Fickian and non-classical Case II diffusion. This paper adds to the basic understanding of the computational modelling of the Case II diffusion phenomenon.
DDC Class
530: Physik
540: Chemie
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback