TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Triaxial testing methodology for gassy soils
 
Options

Triaxial testing methodology for gassy soils

Publikationstyp
Journal Article
Date Issued
2023-09-15
Sprache
English
Author(s)
Kaminski, Pauline  orcid-logo
Geotechnik und Baubetrieb B-5  
Grabe, Jürgen  
Geotechnik und Baubetrieb B-5  
TORE-URI
https://hdl.handle.net/11420/43555
Journal
Geotechnical testing journal  
Volume
46
Issue
6
Article Number
GTJODJ
Citation
Geotechnical Testing Journal 46 (6): (2023-09-15)
Publisher DOI
10.1520/GTJ20230296
Scopus ID
2-s2.0-85171864010
Small amounts of gas occur in almost every sediment inmarine or coastal environments. In past studies, a negative influence of gas on the mechanical properties of soil was associated with geohazard occurrence and dike safety in tide affected areas. However, the impact of a homogeneous distribution of gas bubbles in soil on its mechanical properties has not yet been thoroughly understood. In order to further investigate and improve our understanding of the shear strength of gassy soils, an experimental setup and a sample preparation procedure to implement the axis-Translation method were developed. To this end, a temperature-controlled triaxial apparatus was specially modified. The triaxial apparatus is supplemented by a circulation system, required for the preparation of gassy samples with a homogeneous gas bubble distribution. In the circulation system, a defined quantity of carbon dioxide gas is dissolved in water. During the test procedure, the carbonated water is circulated into a saturated sample via a pressure gradient between the sample top and bottom. A subsequent unloading, tailored to the previously dissolved gas quantity, leads to gas exsolution in the sample. As a result, a defined degree of saturation can be generated within the triaxial apparatus. This experimental procedure represents a nondestructive technique for the preparation of gassy soil samples that is not limited to specific soil types. Triaxial shear tests on these samples extend our knowledge on the stress-strain behavior of gassy soils and thus provide a basis for future research, e.g., in the field of constitutive modeling.
Subjects
Axis-Translation method
Circulation
Gas exsolution
Gassy soil
Shear strength
Triaxial testing
DDC Class
550: Earth Sciences, Geology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback