TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A global survey on the seasonal variation of the marginal distribution of daily precipitation
 
Options

A global survey on the seasonal variation of the marginal distribution of daily precipitation

Publikationstyp
Journal Article
Date Issued
2016-05-12
Sprache
English
Author(s)
Papalexiou, Simon Michael  
Koutsoyiannis, Demetris  
TORE-URI
https://hdl.handle.net/11420/57938
Journal
Advances in water resources  
Volume
94
Start Page
131
End Page
145
Citation
Advances in Water Resources 94: 131-145 (2016)
Publisher DOI
10.1016/j.advwatres.2016.05.005
Scopus ID
2-s2.0-84969581200
Publisher
Elsevier
To characterize the seasonal variation of the marginal distribution of daily precipitation, it is important to find which statistical characteristics of daily precipitation actually vary the most from month-to-month and which could be regarded to be invariant. Relevant to the latter issue is the question whether there is a single model capable to describe effectively the nonzero daily precipitation for every month worldwide. To study these questions we introduce and apply a novel test for seasonal variation (SV-Test) and explore the performance of two flexible distributions in a massive analysis of approximately 170,000 monthly daily precipitation records at more than 14,000 stations from all over the globe. The analysis indicates that: (a) the shape characteristics of the marginal distribution of daily precipitation, generally, vary over the months, (b) commonly used distributions such as the Exponential, Gamma, Weibull, Lognormal, and the Pareto, are incapable to describe "universally" the daily precipitation, (c) exponential-tail distributions like the Exponential, mixed Exponentials or the Gamma can severely underestimate the magnitude of extreme events and thus may be a wrong choice, and (d) the Burr type XII and the Generalized Gamma distributions are two good models, with the latter performing exceptionally well.
Subjects
Burr type XII distribution
Daily precipitation
Generalized gamma distribution
Marginal distribution
Seasonal variation
Spatial variation
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback