TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A practical approach to test the scope of FIB-SEM 3D reconstruction
 
Options

A practical approach to test the scope of FIB-SEM 3D reconstruction

Publikationstyp
Conference Paper
Date Issued
2010-08-09
Sprache
English
Author(s)
Ritter, Martin  orcid-logo
Midgley, P. A.  
TORE-URI
http://hdl.handle.net/11420/14511
Journal
Journal of physics. Conference Series  
Volume
241
Article Number
012081
Citation
Electron Microscopy and Analysis Group Conference (EMAG 2009)
Contribution to Conference
Electron Microscopy and Analysis Group Conference, EMAG 2009  
Publisher DOI
10.1088/1742-6596/241/1/012081
Scopus ID
2-s2.0-84969624489
State-of-the-art focused ion beam (FIB) instruments have an ion column for sample modification and an electron column for scanning electron microscopy (SEM). 3D reconstruction of a sample volume can be achieved by serial sectioning using the FIB in combination with high-resolution SEM imaging of each cross-section. Usually, the resolution in the direction in which the sections are milled (z-direction) is much lower than in the plane of the cross-section (xy-direction) itself. Increased sampling in the z-direction can only be achieved by decreasing the distance between single sections. For a constant volume this is equivalent to increasing the number of sections, i.e. time and effort. To perform efficient 3D reconstructions the effect of the reduced sampling in the z-direction to the overall accuracy of the 3D reconstruction has to be known. We tested this approach with FIB conical test structures that were slice-and-view processed and subsequently reconstructed. Using a reference data set with a slice thickness (z-resolution) of 22 nm, data with z-resolutions ranging from 44 nm to 440 nm were created and reconstructed with commercial software. The calculated volumes for the simulated z-resolutions and their deviations from the reference volume are shown. Deviations of up to 35% occur and reach about 10% once the z-resolution was one fifth of the upper diameter of the conical structures.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback