TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Molecular mobility and electrical conductivity of amino acid-based (DOPA) ionic liquid crystals in the bulk state and nanoconfinement
 
Options

Molecular mobility and electrical conductivity of amino acid-based (DOPA) ionic liquid crystals in the bulk state and nanoconfinement

Citation Link: https://doi.org/10.15480/882.15916
Publikationstyp
Journal Article
Date Issued
2025-09-10
Sprache
English
Author(s)
Kolmangadi, Mohamed Aejaz  
Raab, Aileen Rebecca  
Szymoniak, Paulina  
Li, Zhuoqing 
Material- und Röntgenphysik M-2  
Huber, Patrick  orcid-logo
Material- und Röntgenphysik M-2  
Laschat, Sabine  
Schönhals, Andreas  
TORE-DOI
10.15480/882.15916
TORE-URI
https://hdl.handle.net/11420/57541
Journal
Physical chemistry, chemical physics  
Volume
27
Issue
35
Start Page
18162
End Page
18178
Citation
Physical chemistry, chemical physics 27 (35): 18162-18178 (2025)
Publisher DOI
10.1039/d5cp02406d
Scopus ID
2-s2.0-105015654589
Publisher
Royal Society of Chemistry
This study explores the molecular mobility, phase behavior, and electrical conductivity of dihydroxyphenylalanine-based ionic liquid crystals (DOPAn, with alkyl side chains n = 12, 14, 16) featuring cyclic guanidiniumchloride headgroups, in both bulk and nanoconfined states. Using broadband dielectric spectroscopy, differential scanning calorimetry, and fast scanning calorimetry, the research uncovers a complex interplay between molecular structure, self-assembly, and molecular mobility. In bulk, DOPAn shows a phase sequence from plastic crystalline to hexagonal columnar and isotropic phases, driven by superdisc formation and columnar organization. Multiple relaxation processes are identified: localized side-chain dynamics (γ-relaxation), ionic headgroup or core motions (α<inf>1</inf>-relaxation), and cooperative alkyl domain fluctuations (α<inf>2</inf>-relaxation). Conductivity decreases with increasing side chain length. Under nanoconfinement in anodic aluminum oxide membranes, phase behavior changes: the Col<inf>h</inf>-Iso transition is suppressed, and a new α<inf>3</inf>-relaxation appears, linked to dynamics in an adsorbed interfacial layer. DC conductivity drops by up to four orders of magnitude due to confinement effects, altered molecular orientation, and phase transitions—especially the emergence of a nematic-like state in DOPA16. These findings highlight the importance of molecular design, pore geometry, and surface chemistry in tuning ionic liquid crystal properties for advanced applications in nanofluidics, ion transport, and responsive materials.
DDC Class
541.3: Physical Chemistry
620.11: Engineering Materials
Funding(s)
Ionische Flüssigkristalle in Nanoporösen Festkörpern: Selbstorganisation, molekulare Mobilität und elektro-optische Funktionalität  
Funding Organisations
Deutsche Forschungsgemeinschaft (DFG)  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/3.0/
Loading...
Thumbnail Image
Name

d5cp02406d.pdf

Size

2.71 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback