TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Influence of nanopore coating patterns on the translocation dynamics of polyelectrolytes
 
Options

Influence of nanopore coating patterns on the translocation dynamics of polyelectrolytes

Publikationstyp
Journal Article
Date Issued
2023-10-07
Author(s)
Datar, Adwait  
Regelungstechnik E-14  
Tanyhin, Bohdan
Melchionna, Simone  
Fyta, Maria  
TORE-URI
https://hdl.handle.net/11420/43830
Journal
Journal of chemical physics  
Volume
159
Issue
13
Article Number
134901
Citation
Journal of Chemical Physics 159 (13): 134901 (2023-10-07)
Publisher DOI
10.1063/5.0164355
Scopus ID
2-s2.0-85174277795
Polyelectrolytes can electrophoretically be driven through nanopores in order to be detected. The respective translocation events are often very fast and the process needs to be controlled to promote efficient detection. To this end, we attempt to control the translocation dynamics by coating the inner surface of a nanopore. For this, different charge distributions are chosen that result in substantial variations of the pore-polymer interactions. In addition and in view of the existing detection modalities, experimental settings, and nanopore materials, different types of sensors inside the nanopore have been considered to probe the translocation process and its temporal spread. The respective transport of polyelectrolytes through the coated nanopores is modeled through a multi-physics computational scheme that incorporates a mesoscopic/electrokinetic description for the solvent and particle-based scheme for the polymer. This investigation could underline the interplay between sensing modality, nanopore material, and detection accuracy. The electro-osmotic flow and electrophoretic motion in a pore are analyzed together with the polymeric temporal and spatial fluctuations unraveling their correlations and pathways to optimize the translocation speed and dynamics. Accordingly, this work sketches pathways in order to tune the pore-polymer interactions in order to control the translocation dynamics and, in the long run, errors in their measurements.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback