TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. How extreme is extreme? An assessment of daily rainfall distribution tails
 
Options

How extreme is extreme? An assessment of daily rainfall distribution tails

Publikationstyp
Journal Article
Date Issued
2013-02-28
Sprache
English
Author(s)
Papalexiou, Simon Michael  
Koutsoyiannis, D.  
Makropoulos, C.  
TORE-URI
https://hdl.handle.net/11420/57942
Journal
Hydrology and earth system sciences  
Volume
17
Issue
2
Start Page
851
End Page
862
Citation
Hydrology and Earth System Sciences 17 (2): 851-862 (2013)
Publisher DOI
10.5194/hess-17-851-2013
Scopus ID
2-s2.0-84874471346
Publisher
EGU
The upper part of a probability distribution, usually known as the tail, governs both the magnitude and the frequency of extreme events. The tail behaviour of all probability distributions may be, loosely speaking, categorized into two families: heavy-tailed and light-tailed distributions, with the latter generating "milder" and less frequent extremes compared to the former. This emphasizes how important for hydrological design it is to assess the tail behaviour correctly. Traditionally, the wet-day daily rainfall has been described by light-tailed distributions like the Gamma distribution, although heavier-tailed distributions have also been proposed and used, e.g., the Lognormal, the Pareto, the Kappa, and other distributions. Here we investigate the distribution tails for daily rainfall by comparing the upper part of empirical distributions of thousands of records with four common theoretical tails: those of the Pareto, Lognormal, Weibull and Gamma distributions. Specifically, we use 15 029 daily rainfall records from around the world with record lengths from 50 to 172 yr. The analysis shows that heavier-tailed distributions are in better agreement with the observed rainfall extremes than the more often used lighter tailed distributions. This result has clear implications on extreme event modelling and engineering design.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback