TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Characterization of an extremely thermo-active archaeal β-glucosidase and its activity towards glucan and mannan in concert with an endoglucanase
 
Options

Characterization of an extremely thermo-active archaeal β-glucosidase and its activity towards glucan and mannan in concert with an endoglucanase

Publikationstyp
Journal Article
Date Issued
2019-12-01
Sprache
English
Author(s)
Schröder, Carola  
Eixenberger, Daniela 
Suleiman, Marcel  
Schäfers, Christian  
Antranikian, Garabed  
Institut
Technische Mikrobiologie V-7  
TORE-URI
http://hdl.handle.net/11420/3933
Journal
Applied microbiology and biotechnology  
Volume
103
Issue
23-24
Start Page
9505
End Page
9514
Citation
Applied Microbiology and Biotechnology 23-24 (103): 9505-9514 (2019-12-01)
Publisher DOI
10.1007/s00253-019-10218-1
Scopus ID
2-s2.0-85075189251
A metagenome from an enrichment culture of a hydrothermal vent sample taken at Vulcano Island (Italy) was sequenced and an endoglucanase-encoding gene (vulcel5A) was identified in a previous work. VulCel5A with maximal activity at 115 °C was characterized as the most heat-active endoglucanase to date. Based on metagenome sequences, genomes were binned and bin4 included vulcel5A as well as a putative GH1 β-glycosidase-encoding gene (vulbgl1A) with highest identities to sequences from the archaeal genus Thermococcus. The recombinant β-glucosidase VulBgl1A produced in E. coli BL21 pQE-80L exhibited highest activity at 105 °C and pH 7.0 (76.12 ± 5.4 U/mg, 100%) using 4NP β-D-glucopyranoside as substrate and 61% relative activity at 120 °C. Accordingly, VulBgl1A represents one of the most heat-active β-glucosidases to date. The enzyme has a broad substrate specificity with 155% activity towards 4NP β-D-mannopyranoside in comparison with 4NP β-D-glucopyranoside. Moreover, nearly complete hydrolysis of cellobiose was demonstrated. The enzyme exhibited a high glucose tolerance with 26% residual activity in presence of 2 M glucose and was furthermore activated at glucose concentrations of up to 0.5 M. When the endoglucanase VulCel5A and the β-glucosidase VulBgl1A were applied simultaneously at 99 °C, 158% activity towards barley β-glucan and 215% towards mannan were achieved compared with the activity of VulCel5A alone (100%). Consequently, a significant increase in glucose formation was observed when both enzymes were incubated with β-glucan and mannan suggesting a synergistic effect. Hence, the two archaeal extremozymes are ideal candidates for complete glucan and mannan saccharification at temperatures above the boiling point of water.
Subjects
Extremozymes
Glucose-tolerant
Heat-active
Synergism
β-Glucosidase
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback